TOPOLOGICAL ENTROPY AT AN Ω -EXPLOSION

BY LOUIS BLOCK(1)

ABSTRACT. In this paper an example is given of a C^2 map g from the circle onto itself, which permits an Ω -explosion. It is shown that topological entropy (considered as a map from $C^2(S^1, S^1)$ to the nonnegative real numbers) is continuous at g.

1. Introduction. Let g denote any C^2 mapping of the circle onto itself which satisfies the following properties (see Figure 1):

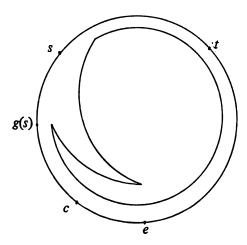


FIGURE 1

- (1) g has an expanding fixed point e and a contracting fixed point c, and these are the only fixed points of g.
 - (2) g preserves orientation at e and c.
- (3) g has nondegenerate singularities t and s, and these are the only singularities of g.
- (4) The points e, t, s, g(s), and c are distinct and in order on the circle in the counterclockwise direction.
 - (5) g is one-to-one on each of the intervals (e, t), (t, s), and (s, e). Here we

Presented to the Society, August 25, 1976; received by the editors July 26, 1976. AMS (MOS) subject classifications (1970). Primary 58F10.

⁽¹⁾ Partially supported by NSF grant MCS 76-05822.

use the notation (a, b) to denote the open arc from a counterclockwise to b. (6) g(t) = e.

These properties imply that $\Omega(g) = \{e, c\}$, where $\Omega(g)$ denotes the nonwandering set (see [2], [5], or [7] for definition).

It is easy to see that g permits an Ω -explosion. By this we mean that for any neighborhood N of g in $C^2(S^1, S^1)$, there is a map $f \in N$ with $\Omega(f)$ infinite. See Proposition 9 in §4 for a proof.

Let ent denote topological entropy (see §2 for the definition). Our main result is the following:

THEOREM A. The map ent: $C^2(S^1, S^1) \rightarrow R$ is continuous at g.

Theorem A implies that for any bifurcation through g, at the map g there is no sudden jump in the amount of action.

To prove Theorem A we first, in §3, obtain an upper bound for entropy (Theorem 6). Then, in §4, we construct a sequence (f_n) of maps with $ent(f_n) \to 0$ as $n \to \infty$. Finally, in §5, we prove Theorem A by using Theorem 6 to show that for arbitrarily large n if f is close enough to g in $C^2(S^1, S^1)$, then $ent(f) \le ent(f_n)$.

2. Preliminary definitions and results. We first review the definition of topological entropy given in [1]. Let X be a compact space and $f: X \to X$ a continuous map. For any two open covers $\mathscr C$ and $\mathscr C$ of X, let $\mathscr C \vee \mathscr C$ denote $\{A \cap B: A \in \mathscr C \text{ and } B \in \mathscr C\}$, and let $f^{-1}(\mathscr C)$ denote $\{f^{-1}(A): A \in \mathscr C\}$. Let $M_n(f, \mathscr C)$ denote the minimum cardinality of a subcover of X of

(*)
$$\mathscr{Q} \vee f^{-1}(\mathscr{Q}) \vee \cdots \vee f^{(-n+1)}(\mathscr{Q}).$$

We set

$$\operatorname{ent}(f, \mathcal{Q}) = \lim_{n \to \infty} \frac{1}{n} \left(\ln(M_n(f, \mathcal{Q})) \right),$$

where \ln denotes the natural logarithm. It is easy to see that this limit exists and is finite (see [1]). Finally, we define the topological entropy of f by

$$\mathrm{ent}(f) = \sup(\mathrm{ent}(f, \mathcal{C}))$$

where the supremum is taken over all open covers $\mathscr C$ of X. If X is a metric space it suffices to consider any sequence of open covers whose diameter approaches zero (see [1]). By the diameter of an open cover $\mathscr C$ we mean the supremum of the diameters of the open sets in $\mathscr C$.

We now state some basic facts about topological entropy which will be used later. In each of the four propositions, f is a continuous map of a compact space X into itself. Proposition 2 follows immediately from the definition, and Proposition 4 follows from Proposition 3.

PROPOSITION 1 (SEE [5]). If X is a metric space, ent(f) = ent(f| $\Omega(f)$).

PROPOSITION 2. If X is finite, ent(f) = 0.

PROPOSITION 3 (SEE [1]). If X_1 and X_2 are closed subsets of X, with $X_1 \cup X_2 = X$ and $f(X_1) \subset X_1$ and $f(X_2) \subset X_2$, then

$$ent(f) = \max\{ent(f|X_1), ent(f|X_2)\}.$$

PROPOSITION 4. If K is a closed subset of X, with $f(K) \subset K$, then $ent(f|K) \leq ent(f)$.

We will assume the reader is familiar with the following terminology (see [2] or [7]); nonwandering set, expanding fixed point, contracting fixed point, and stable manifold of a contracting fixed point (denoted $W^s(c)$). For any point $x \in W^s(c)$, we will use the notation $\operatorname{slsm}(x)$ to denote the component of $W^s(c)$ which contains x.

3. An upper bound for entropy. The proof of Theorem 6 (which modifies a theorem of [2]) uses the following lemma from [2] (see [2, §3, Lemma 5]).

LEMMA 5. Let $f \in C^0(S^1, S^1)$. Let K_1, \ldots, K_n be proper closed intervals of S^1 , such that for each $i = 1, \ldots, n-1$, $f|K_i$ is a homeomorphism and $f(K_i) \subset K_{i+1}$. Let \mathfrak{C} be a covering of $K_1 \cup \cdots \cup K_n$ by finitely many open intervals, such that $\forall A \in \mathfrak{C}$ and $i = 1, \ldots, n, A \cap K_i$ is an interval (or empty). Let $\operatorname{card}(\mathfrak{C}) = k$ (card denotes cardinality). Then there is a subset \mathfrak{B} of (*) which covers K_1 , with $\operatorname{card}(\mathfrak{B}) \leq n \cdot k$.

In Theorems 6 and A we will use the following definition. Let \mathcal{C} be a finite collection of closed intervals on S^1 , $\mathcal{C} = \{I(1), \ldots, I(p)\}$, and let $f \in C^0(S^1, S^1)$. We denote by $K_n(f, \mathcal{C})$ the number of distinct nonempty sets of the form

$$I(j_1) \cap f^{-1}(I(j_2)) \cap \cdots \cap f^{(-n+1)}(I(j_n)),$$

where $j_i \in \{1, \ldots, p\}$ for $i = 1, \ldots, n$.

THEOREM 6. Let $f \in C^1(S^1, S^1)$, and let $\mathcal{C} = \{I(1), \ldots, I(p)\}$ be a finite collection of proper closed intervals on S^1 . Let $W = S^1$ or $W = S^1 - (O_1 \cup O_2 \cup \cdots \cup O_m)$ where O_i is a component of the stable manifold of a contracting periodic point c_i for $i = 1, \ldots, m$. Suppose the following conditions hold.

- $(1) I(1) \cup \cdots \cup I(p) = W.$
- (2) For j = 1, ..., p, f maps I(j) homeomorphically onto its image.
- (3) For any i = 1, ..., p and $j = 1, ..., p, f(I(i)) \cap I(j)$ is an interval. Then

$$\operatorname{ent}(f) \leq \lim_{n \to \infty} \frac{1}{n} \left(\ln(K_n(f, \mathcal{C})) \right).$$

PROOF. Let δ denote the minimum length of the intervals $S^1 - I(j)$ where $j = 1, \ldots, p$. Let \mathcal{C} be any finite cover of $I(1) \cup \cdots \cup I(p)$ by open

intervals with the diameter of $\mathscr Q$ less than δ . Let $k = \operatorname{card}(\mathscr Q)$.

$$I(j_1, j_2, \ldots, j_n) = I(j_1) \cap f^{-1}(I(j_2)) \cap \cdots \cap f^{(-n+1)}(I(j_n))$$

where $j_i \in \{1, 2, \ldots, p\}$ $\forall i = 1, \ldots, n$. Then each nonempty $I(j_1, j_2, \ldots, j_n)$ is a closed interval and f maps $I(j_1, j_2, \ldots, j_n)$ homeomorphically into $I(j_2, \ldots, j_n)$. For any fixed $I(j_1, j_2, \ldots, j_n)$, by Lemma 5 (with $K_i = I(j_1, \ldots, j_n)$), there is a subset of (*) which covers $I(j_1, j_2, \ldots, j_n)$ of cardinality at most $n \cdot k$.

Let $X = S^1 - (\bigcup_{i=1}^m W^s(c_i))$. Then X is a compact set with $f(X) \subset X$ and $f^{-1}(X) \subset X$.

Let $\mathcal{C}(X)$ be the open cover of X defined by $\mathcal{C}(X) = \{A \cap X : A \in \mathcal{C}\}$. Then for any $I(j_1, j_2, \dots, j_n)$, the minimal number of open sets of

$$\mathfrak{C}(X) \vee f^{-1}(\mathfrak{C}(X)) \vee \cdots \vee f^{(-n+1)}(\mathfrak{C}(X))$$

needed to cover $X \cap I(j_1, j_2, \ldots, j_n)$ is equal to the minimal number of open sets of (*) needed to cover $X \cap I(j_1, j_2, \ldots, j_n)$. Also X is contained in the union of all the $I(j_1, j_2, \ldots, j_n)$. Hence

$$M_n(f|X, \mathfrak{C}(X)) \leq (K_n(f, \mathfrak{C})) \cdot n \cdot k.$$

This implies that

$$\operatorname{ent}(f|X,\,\mathfrak{C}(X)) \leq \lim_{n\to\infty} \frac{1}{n} \left(\ln(K_n(f,\,\mathfrak{C}))\right).$$

Since the diameter of $\mathcal{C}(X)$ may be taken to be arbitrarily small, we have

$$\operatorname{ent}(f|X) \leq \lim_{n \to \infty} \frac{1}{n} \left(\ln(K_n(f, \mathcal{C})) \right).$$

But X contains all nonwandering points of f except for the finite set $\{c_1, c_2, \ldots, c_m\}$. Thus, using Propositions 1-4,

$$\operatorname{ent}(f) = \operatorname{ent}(f|\Omega(f)) = \operatorname{ent}(f|X) < \lim_{n \to \infty} \frac{1}{n} \left(\ln(K_n(f, \mathcal{C})) \right). \quad \text{Q.E.D.}$$

- 4. Construction of the sequence f_n . Let f_n be any map in $C^2(S^1, S^1)$ which satisfies properties (1)-(4) of g in §1 and the following:
 - (5') There are points $l \in (e, t)$ and $k \in (t, s)$ with f(l) = f(k) = e.
 - (6') g is one-to-one on each of the intervals (e, l), (l, t), (t, s), and (s, e).
- (7') $f_n(t) \in \text{slsm}(c^{-n})$ where c^{-n} is defined as follows. Let $c^0 = c$. Then for $i = 1, \ldots, n$ let c^{-i} denote the unique inverse image (under f_n) of c^{-i+1} in (e, l). Recall that $\text{slsm}(c^{-n})$ denotes the component of $W^s(c)$ which contains c^{-n} .

The map f_3 is pictured in Figure 2. Let H_1 , H_2 , H_3 , H_4 , H_5 be the disjoint

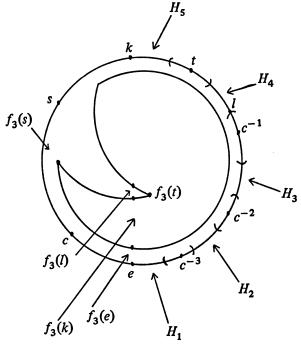


FIGURE 2

closed intervals which form the complement of

$$\operatorname{slsm}(c) \cup \operatorname{slsm}(c^{-1}) \cup \operatorname{slsm}(c^{-2}) \cup \operatorname{slsm}(c^{-3}) \cup \operatorname{slsm}(t)$$
.

Note that $\operatorname{slsm}(c) = (k, e)$. We can define a 5×5 matrix A_3 by $A_3(i, j) = 1$ if $f_3(H_i) \cap H_j \neq \emptyset$ and $A_3(i, j) = 0$ otherwise. Note that $f_3(H_i) \cap H_j \neq \emptyset$ implies $f_3(H_i) \supset H_j$. It is easy to see from Figure 2 that

$$A_3 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

We can define a matrix A_n analogously, and A_n is the $(n + 2) \times (n + 2)$ matrix

$$A_n = \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \end{bmatrix}$$

where the missing rows have ones on the super diagonal and zeros elsewhere.

The following proposition follows from Theorem D of [2].

PROPOSITION 7. ent $(f_n) = \ln(\lambda_n)$ where λ_n denotes the largest eigenvalue of A_n .

THEOREM 8. ent $(f_n) \to 0$ as $n \to \infty$.

PROOF. A straightforward calculation shows that for n > 3 the characteristic polynomial of A_n is $p_n(x) = (-1)^n(x)(x^{n+1} - x^n - 2)$. Now λ_n is the largest root of p_n , and it is easy to see that $\lambda_n \to 1$ as $n \to \infty$. The theorem now follows from Proposition 7. Q.E.D.

PROPOSITION 9. For any neighborhood N of g in $C^2(S^1, S^1)$, there is a map in N with positive entropy (and hence by Propositions 1 and 2 infinite nonwandering set).

PROOF. Let N be any neighborhood of g in $C^2(S^1, S^1)$. There is (for large enough n) a map $h \in N$ satisfying properties (1)–(4) and (5')–(7') of the map f_n in the sequence defined above. Hence $\operatorname{ent}(h) = \ln(\lambda_n)$ where λ_n is the largest root of $p_n(x) = (-1)^n(x)(x^{n+1} - x^n - 2)$. Clearly $\lambda_n > 1$, so $\ln(\lambda_n) > 0$. Q.E.D.

5. Proof of Theorem A.

THEOREM A. The map ent: $C^2(S^1, S^1) \rightarrow R$ is continuous at g.

PROOF. Let $\varepsilon > 0$. Choose N large enough that $\operatorname{ent}(f_N) < \varepsilon$ where f_N is the Nth term of the sequence defined in §4. Choose $\delta > 0$ such that if $d(g, f) < \delta$, where d denotes a metric on $C^2(S^1, S^1)$, then the following hold.

- (1) f has an expanding fixed point e(f) and a contracting fixed point c(f) and these are the only fixed points of f.
 - (2) f preserves orientation at e(f) and c(f).
- (3) f has nondegenerate singularities t(f) and s(f) and these are the only singularities of f.
- (4) The points e(f), t(f), s(f), f(s(f)), and c(f) are distinct and in order on the circle in the counterclockwise direction.
 - (5) Either (5A) holds or (5B) and (5C) hold.
- (5A) $f(t(f)) \in [c(f), e(f)]$ and f is one-to-one on each of the intervals (e(f), t(f)), (t(f), s(f)) and (s(f), e(f)).
- (5B) There are points $l(f) \in (e(f), t(f))$ and $k(f) \in (t(f), s(f))$ with f(l(f)) = f(k(f)) = e(f).

Also f is one-to-one on each of the intervals (e(f), l(f)), (l(f), t(f)), (t(f), s(f)), and (s(f), e(f)).

(5C) $f(t(f)) \in (e(f), c^{-N}(f))$ where $c^{-N}(f)$ is defined as follows. Let

 $c^0(f) = c(f)$. Then for i = 1, ..., N let $c^{-i}(f)$ denote the unique inverse image (under f) of $c^{-i+1}(f)$ in (e(f), l(f)).

Let $f \in C^2(S^1, S^1)$ with $d(g, f) < \delta$. We will show that $ent(f) < \varepsilon$. If property (5A) above holds, it follows that $\Omega(f) = \{e(f), c(f)\}$, and ent(f) = 0. Hence we may assume that (5B) and (5C) hold.

We define a collection of proper closed intervals $\mathcal{C}(f) = \{I_1, \ldots, I_{N+2}\}$ as follows. Let I_1, \ldots, I_N be the components of the complement in $[e(f), c^{-1}(f)]$ of

$$\operatorname{slsm}(c^{-1}(f)) \cup \cdots \cup \operatorname{slsm}(c^{-N}(f)).$$

Let $I_{N+1} = [l(f), t(f)]$ and $I_{N+2} = [t(f), k(f)]$. Then if W is the complement in S^1 of

$$\operatorname{slsm}(c(f)) \cup \operatorname{slsm}(c^{-1}(f)) \cup \cdots \cup \operatorname{slsm}(c^{-N}(f))$$

we have $I_1 \cup \cdots \cup I_{N+2} = W$. Hence by Theorem 6,

$$\operatorname{ent}(f) \leq \lim_{n \to \infty} \frac{1}{n} \left(\ln \left(K_n(f, \mathcal{C}(f)) \right) \right).$$

Let H_1, \ldots, H_{N+2} be the components of the complement in S^1 of the following set (defined with respect to f_N):

$$\operatorname{slsm}(c) \cup \operatorname{slsm}(c^{-1}) \cup \cdots \cup \operatorname{slsm}(c^{-N}) \cup \operatorname{slsm}(t)$$
.

Let $h = f_N$ and $\mathfrak{D}(h) = \{H_1, \ldots, H_{N+2}\}.$

It will be helpful for the reader to see Figure 2, in which N=3 and H_1 , H_2 , H_3 , H_4 , and H_5 are as indicated. In the case N=3 one may also use Figure 2 for a picture of the intervals I_1 , I_2 , I_3 , I_4 , and I_5 . To do this, of course, we must replace e, t, c, etc., by e(f), t(f), c(f), etc. Then in the modified figure, I_1 , I_2 , and I_3 are intervals corresponding to H_1 , H_2 , and H_3 , while $I_4=[l(f), t(f)]$ and $I_5=[t(f), k(f)]$.

We may assume that the H_i are numbered as in Figure 2, and the I_i are numbered analogously. We claim that for each positive integer n, $K_n(f, \mathcal{C}(f)) \leq K_n(h, \mathcal{D}(h))$. To prove this claim, suppose that

$$I(j_1) \cap f^{-1}(I(j_2)) \cap \cdots \cup f^{(-n+1)}(I(j_n)) \neq \emptyset.$$

Then $f(I(j_i)) \cap I(j_{i+1}) \neq \emptyset$ for i = 1, ..., n-1. By construction, whenever $f(I(i)) \cap I(k) \neq \emptyset$, $A_N(i, k) = 1$ where A_N is the matrix defined in §4. Hence $h(H(j_i)) \supset H(j_{i+1})$ for i = 1, ..., n-1. This implies that

$$H(j_1) \cap h^{-1}(H(j_2)) \cap \cdots \cap h^{(-n+1)}(H(j_n)) \neq \emptyset.$$

This proves our claim that for each positive integer n, $K_n(f, \mathcal{C}(f)) \leq K_n(h, \mathfrak{D}(h))$.

Let X be the complement in S^1 of the stable manifold of c (with repsect to $h = f_N$). Let $\mathfrak{D}(X) = \{H_1 \cap X, \ldots, H_{N+2} \cap X\}$. Then $\mathfrak{D}(X)$ is an open

cover of X, and for each positive integer n (since the H_i are pairwise disjoint),

$$K_n(h, \mathfrak{D}(h)) = M_n(h|X, \mathfrak{D}(X)).$$

We have for each positive integer n,

$$K_n(f, \mathcal{C}(f)) \leq K_n(h, \mathfrak{D}(h)) = M_n(h|X, \mathfrak{D}(X)).$$

Also,

$$\mathrm{ent}(f) \leq \lim_{n \to \infty} \frac{1}{n} \left(\ln \left(K_n(f, \mathcal{C}(f)) \right) \right).$$

Hence

$$\operatorname{ent}(f) \leq \operatorname{ent}(h|X, \mathfrak{D}(X)) \leq \operatorname{ent}(h) < \varepsilon.$$
 Q.E.D.

REFERENCES

- 1. R. L. Adler, A. G. Konheim and M. H. McAndrew, *Topological entropy*, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 30 #5291.
- 2. L. Block, An example where topological entropy is continuous, Trans. Amer. Math. Soc. 213 (1977), 201-213.
- 3. _____, Noncontinuity of topological entropy of maps of the Cantor set and of the interval, Proc. Amer. Math. Soc. 50 (1975), 388-393. MR 51 #4195.
- 4. R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. MR 43 #469.
- 5. _____, Topological entropy and axiom A, Proc. Sympos. Pure Math., Vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 23-41. MR 41 #7066.
- 6. M. Misiurewicz, On non-continuity of topological entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 319-320. MR 44 #4781.
- 7. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598; 39, p. 1593.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611